FINAL BROCHURE **2021** This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 776402. SYSTEM FOR VEHICLE-INFRASTRUCTURE INTERACTION ASSETS HEALTH STATUS MONITORING ### CONTENT | _ | Foreword | 3 | |----------|---|----| | • | Introduction | 3 | | V | Facts & Figures | 3 | | V | Structure of the project | 4 | | V | List of project deliverables | 6 | | V | GMV NSL - EGNSS positioning | 8 | | V | CEIT - Pantograph-catenary interaction monitoring | 12 | | V | DLR - Wheel-rail interaction monitoring | 15 | | V | Ingecontrol - Visualization platform | 18 | | V | Dissemination | 20 | | V | List of acronyms | 23 | | V | Consortium | 26 | #### **Foreword** After 42 months of intensive collaborative work, the EUSPA-funded project SIA, which started in March 2018, has come to an end in August 2021. Over the last few months, and despite COVID-19 restrictions, we have completed all work and testing activities initially planned and are now conveying the project's final results. This brochure will give our readers a short overview of these activities and results. For more information on the project, please consult our <u>project website</u>. ### **Facts & Figures** #### Introduction The main objective of the project was the development of four ready-to-use new services providing prognostic information on the health status of the railway's most demanding assets in terms of maintenance costs (wheel, rail, pantograph and catenary): - iWheelMon for railway operators will provide real time information about wheel status, - ▶ iPantMon for railway operators will provide real time information about the pantograph status, - ▶ iRailMon for rail infrastructure managers and maintenance subcontractors will provide real time information about the rail status, - ▶ iCatMon for rail infrastructure managers and maintenance subcontractors will provide real time information about the catenary status. These new services will help to reduce maintenance costs and unscheduled events, as well as derailments associated to the rail-wheel interface. To tackle this challenge, the SIA consortium has brought together multidisciplinary and cross sector partners (E-GNSS technology providers, research centres, IT companies and railway stakeholders) that have co-designed an E-GNSS solution truly adapted to the needs of the rail sector. ### Structure of the project WP1 Project Management WP2 End user functionality and SIA architecture definition WP3 EGNOS and Galileo based on-board low-cost receiver and algorithms for railway specific domain WP4 Integration of sensors, communications and energy supply for on-board sensing nodes WP5 Component degradation predictive algorithms WP6 Visualisation environment for railway specific maintenance applications WP7 Integration with end-user specific application layer WP8 Test setup development and validation WP9 Dissemination, communication and result exploitation # **List of project deliverables** | WP1 | Project Management | | |------------------------------|--|--| | D1.1 | Project Management and Quality Assurance Plan | Public | | D1.2 | Intellectual Property Rights Controls Agreement | Confidential | | WP2 | End user functionality and SIA architecture definition | | | D2.1 | End user requirements of SIA and validation plan | Public | | D2.2 | SIA architecture | Public | | WP3 | EGNOS and Galileo based on-board low-cost receiver and algor railway specific domain | ithms for | | D3.1 | Justification of the selection of the EGNOS and Galileo based receiver HW platform | Confidential | | D3.2 | Positioning algorithms based on multisensory inputs | Confidential | | D3.3 | Verification environment for the positioning algorithms | Confidential | | | | | | WP4 | Integration of sensors, communications and energy supply for a sensing nodes | on-board | | WP4 | | on-board Confidential | | | sensing nodes | | | D4.1 | Sensing nodes Wheel to rail and pantograph to catenary sensing nodes Wheel to rail and pantograph to catenary power supply | Confidential | | D4.1
D4.2 | Sensing nodes Wheel to rail and pantograph to catenary sensing nodes Wheel to rail and pantograph to catenary power supply systems On-board data integration platform and train-track | Confidential Confidential | | D4.1
D4.2
D4.3 | Sensing nodes Wheel to rail and pantograph to catenary sensing nodes Wheel to rail and pantograph to catenary power supply systems On-board data integration platform and train-track communication hub | Confidential Confidential | | D4.1 D4.2 D4.3 WP5 | Wheel to rail and pantograph to catenary sensing nodes Wheel to rail and pantograph to catenary power supply systems On-board data integration platform and train-track communication hub Component degradation predictive algorithms | Confidential Confidential Confidential | | D4.1 D4.2 D4.3 WP5 D5.1 | Sensing nodes Wheel to rail and pantograph to catenary sensing nodes Wheel to rail and pantograph to catenary power supply systems On-board data integration platform and train-track communication hub Component degradation predictive algorithms Pre-processing algorithms and communication protocols | Confidential Confidential Confidential Confidential | | D4.1 D4.2 D4.3 WP5 D5.1 D5.2 | Wheel to rail and pantograph to catenary sensing nodes Wheel to rail and pantograph to catenary power supply systems On-board data integration platform and train-track communication hub Component degradation predictive algorithms Pre-processing algorithms and communication protocols Data synchronization in time and position | Confidential Confidential Confidential Confidential Confidential | | WP6 | Visualisation environment for railway specific maintenance app | lications | |------|--|-----------| | D6.1 | Definition of vehicle maintenance standard views and supporting framework | Public | | D6.2 | Definition of infrastructure maintenance standard views and supporting framework | Public | | WP7 | Integration with end-user specific application layer | | | D7.1 | Integration of SIA with end-user information systems | Public | | WP8 | Test setup development and validation | | | D8.1 | SIA Test setup description | Public | | D8.2 | Validation of SIA | Public | | WP9 | Dissemination, communication and result exploitation | | | D9.1 | Dissemination and Communication plan | Public | | D9.2 | Development and delivery of the exploitation plan | Public | | D9.3 | Data management plan (DPM) | Public | | D9.4 | Guidelines for SIA implementation | Public | Public deliverables can be downloaded on the project website at: siaproject.eu/#deliverables # **GMV NSL EGNSS positioning** #### **Objectives** Providing a consistent accurate positioning solution using GNSS for a dynamic train is very challenging, signal masking occurs frequently. This can occur whilst the train passes through tunnels, under bridges, under trees, and through urban obstacles. Signal masking damages both GNSS accuracy and availability however, using more than one GNSS constellation can improve performance due to higher data availability to some extent. Whilst designing the positioning algorithm for the SIA system for the railway, given the advantages of the accuracy and interoperability of Galileo, the use of Galileo with GPS was identified as the baseline for the positioning system for SIA. It is also noted however that multi-constellation GNSS solutions will not guarantee 100% availability in the railway environment and therefore, augmentation of the GNSS solution with IMU data was also completed.. #### SIA_POS Test Results To identify the evolution of the failures in the rail infrastructure, accurate positioning and time stamping that synchronizes measurements from the sensing nodes within the vehicle was deemed essential. These functionalities are provided by the SIA Positioning System (SIA_POS). Within the SIA project, GMV NSL's real time SIA_POS system was installed on three locomotives to complete testing and validation activities in three different railway scenarios with our consortium members, OBB, VIAS and FGC. Within the different activities the following routes were taken: - With OBB, the route used was from Vienna to Linz to the Summerau - ▶ With VIAS, the route used was the high speed line from Madrid to Seville - With FGC, the route used was the BV railway line from Barcelona to Vallès #### **OBB Test Campaign (Vienna to Summerau via Linz)** For the OBB testing campaign, the SIA Positioning System was installed in a locomotive that travelled from Vienna to Linz and then from Linz to Summerau. The equipment used within the OBB testing campaign included the SIA Positioning System and the SIA Data Hub. The SIA Positioning system consisted of an EGNSS enabled dual frequency antenna, dual frequency GNSS receiver, Inertial Measurement Unit (IMU), CPU, Battery and a GNSS Inertial Navigation System to provide a reference trajectory. The images below provide an insight into the setup of the SIA-POS system for the test campaign in the OBB measurement locomotive. Installation of the antenna on the roof of the locomotive and the SIA_POS unit in the cabin in the OBB testing scenario The results of the campaign are tabulated below. During the test, 95% of the time an accuracy of 2.05m was observed from the SIA Positioning System. The analysed results show that an average number of 15
satellites were used and that a position solution was available 100% of the time. | Percentage | 50% | 68% | 95% | |---------------------------|------|------|------| | GPS + Galileo [m] | 0.66 | 0.90 | 2.05 | | Mean Number of Satellites | | 15 | | | Solution Availability | | 100% | | As part of our analysis we also analysed the specific improvement provided by Galileo. To see the impact on the positioning solution, the logged real time data was re-processed and analysed using GPS only observations. Using the same reference trajectory, the horizontal error was computed for a GPS only solution, the analysed results show that with GPS alone 95% of the time an accuracy of 2.75m was observed. However while comparing GPS only results with the GPS and Galileo solution, it was shown that the GPS and Galileo solution provided an improvement of 25% for 95% of the test duration. | Percentage | 50% | 68% | 95% | |---------------------------|--------|-------|--------| | GPS + Galileo [m] | 0.66 | 0.90 | 2.05 | | GPS Only [m] | 0.77 | 1.00 | 2.74 | | Percentage of Improvement | 14.28% | 9.99% | 25.28% | #### FGC Test Campaign (Barcelona to Vallès (BV) Railway Line) The testing activity with FGC provided a very challenging environment for the SIA positioning system. Because the route was mostly underground, the possibility of GNSS signal loss was extremely high. The equipment used within the FGC testing campaign included the SIA Positioning System, SIA Data Hub and SIA Pantograph system. The SIA Positioning system consisted of an EGNSS enabled dual frequency rail certified antenna, dual frequency GNSS receiver, Inertial Measurement Unit (IMU), CPU and Battery. For the campaign, the position performance statistics have been computed for the whole data set and segmented depending on whether the train was underground. Some of the results have been tabulated below. | Percentage | 50% | 68% | 95% | |---------------------------|------|------|------| | GPS + Galileo [m] | 1.9 | 3.10 | 4.36 | | Mean Number of Satellites | | 12 | | | Solution Availability | 100% | | | The results show that in an open sky scenario, an accuracy of 4.36 m was observed 95% of the time. For the overall accuracy for the FGC scenario it was hard to maintain the accuracy of 20m for the whole duration of the test because the track was mostly underground. In order to obtain better accuracy in underground environment, it is advisable to use a better quality IMU to assist in providing better accuracy. Like the OBB campaign, as part of our analysis we also analysed the specific improvement provided by Galileo. To see the impact, the logged real time data has been re-processed and analysed using GPS only observations. Using the same reference trajectory, the horizontal error was computed for a GPS only solution (only for an open sky environment with a minimum number of 6 satellites), this analysis is shown below. The analysed results show that with GPS alone 95% of the time an accuracy of 4.79m was observed. However whilst comparing the GPS only horizontal accuracy with GPS and Galileo position solution, it was shown that the GPS and Galileo solution showed a 9% improvement 95% of the time. | Percentage | 50% | 68% | 95% | |---------------------------|------|-------|------| | GPS + Galileo [m] | 1.9 | 3.10 | 4.36 | | GPS Only [m] | 1.93 | 3.80 | 4.79 | | Percentage of Improvement | 1.5% | 18.1% | 9.0% | #### **VIAS Test Campaign (Madrid to Seville)** For the VIAS testing campaign, the SIA Positioning System was installed in a construction locomotive that travelled from Madrid to Seville on the high speed line. The equipment used within the VIAS testing campaign included the SIA Positioning and Data Hub systems. The SIA Positioning system consisted of an EGNSS enabled dual frequency rail certified antenna, dual frequency GNSS receiver, Inertial Measurement Unit (IMU), CPU and Battery. Below are a few images from the campaign. VIAS locomotive and the installation of the E-GNSS enabled antenna on the roof The results of the campaign are tabulated below which show that 95% of the time an accuracy of 17.9m was observed. The analysed results show that an average number of 15 satellites were used and that a solution was available 100% of the time during the test. | Percentage | 50% | 68% | 95% | |---------------------------|------|------|------| | GPS + Galileo [m] | 0.46 | 0.58 | 17.9 | | Mean Number of Satellites | | 15 | | | Solution Availability | 100% | | | Like the previous campaigns, to see the impact of E-GNSS on the positioning solution, the real time solution was re-processed and analysed using GPS only observations. Using the same reference trajectory, the horizontal error was computed for a GPS only solution, this has been tabulated below. From the results it can be seen that the including Galileo provided a 6% improvement. | Percentage | 50% | 68% | 95% | |---------------------------|-------|------|-------| | GPS + Galileo [m] | 0.46 | 0.58 | 17.9 | | GPS Only [m] | 0.42 | 0.61 | 19.0 | | Percentage of Improvement | -9.5% | 4.9% | 6.14% | In summary for the three campaigns, the GNSS positioning solution was improved by 9% thanks to the use of Galileo (with 100% availability), although further improvements are required to guarantee a position accuracy of 20m for trains with velocity up to 100 km/h and for underground scenarios. # CEIT Pantograph-catenary interaction monitoring #### **Objectives** - ➤ To develop a low-cost monitoring system to be installed in the pantograph to monitor the interaction of the pantograph and catenary. - ➤ To develop algorithms that transform the data acquired by the monitoring system into health-related KPIs: OHL geometry (height and stagger) and interaction dynamics (e.g. contact force). - To integrate the hardware and software in the subsystem in SIA system - To validate the results in a real scenario (install a prototype in a in service train) #### **Description** The main goal of the iCatMon and iPantMon applications is to provide health-related information about two important assets of the railway system: the catenary (in particular the overhead line) and the pantograph. As the two systems interact with each other in a dynamic way, the status of one affects the other, and the other way around. For this reason, having low-cost on board systems that monitor (in a non-invasive way) such interaction is very useful to assess the condition of these assets, and eventually to provide prognosis information about how they degrade over time. In order to develop such a monitoring system, the following approach has been followed in the SIA project: - Characterization of pantograph. First, the static and kinematic performance of the pantograph was assessed using sensors (acceleration, inclination, displacement and force) and measurements in their different constituents: masses, centres of gravity, stiffness, etc. were completed. - Pantograph and catenary modelling. Once the pantograph was assessed, a mathematical model that represents in - a very accurate way the behaviour of the pantograph was built. The same applies for the catenary: its static and dynamic conditions were assessed and modelled in order to integrate the two models. - ▶ Virtual framework. A virtual framework was built to simulate the dynamic interaction between the pantograph and the catenary. This framework was compliant with the EN50318 standard and allowed us toobtain synthetic data that replicated the real signals that can be obtained by real sensors installed in the pantograph at different locations. - Development of algorithms. With the use of the virtual framework, hundreds of different scenarios were created (e.g. in faulty conditions of the different components of the systems). The signals obtained (e.g. accelerations, forces, etc.) were then used to train machine learning algorithms for the detection of defects and to assess the future evolution of the assets' conditions. Algorithms have been developed to monitor the geometry of the overhead line (stagger and height), as well as the dynamic performance of the system (e.g. contact force). - Development of prototype. With the support of the virtual framework, the sensors that are required to generate the signals that lead to health related KPIs were selected, as well as their characteristics and their location in the pantograph. After that, a prototype was built and integrated with the whole SIA system. The prototype is autonomous, as it does not require power supply from the train, and it transmits the information to the data hub wirelessly. - Validation. The prototype has been validated in in service operational conditions on board a FGC train. The validation activity started first by assessing the impact of the system in the performance of the pantograph. Once that the system's non-invasive nature was confirmed, the prototype, and the whole SIA system, was operating and collecting data during commercial service operations for a whole week, with the train traveling across FGC's network in Catalunya (Spain). The results obtained with this monitoring system are very promising, as they correlate the benchmark KPIs provided by commercial measurement devices. A (very) low-cost system composed by three accelerometers installed in the pantograph is adequate for providing the signals required to generate health condition indicators for the assessment of the catenary and pantograph systems and their interaction. Ceit's team working in the installation of SIA_PANT SIA_PANT installed in the pantograph (left). Detail of the main unit on the base plate (right) Installation of the instrumented pantograph in FGC's train Contact force (pantograph-catenary interaction) ### DLR Wheel-rail interaction monitoring #### **Objectives** - Develop sensor systems and processing algorithms for the collection and analysis of geo-referenced axle-box acceleration (ABA) data. - Install SIA hardware on an ÖBB in-service vehicle to perform
several months of pilot operation in the field. - Derive and compute asset key performance indicators for the condition of wheels and rails on the basis of ABA data collected during the pilot operation. #### **Description** The interaction between the wheels of a train and the rail surface causes vibrations that can be recorded using on-board sensors. In the SIA project, axlebox acceleration (ABA) sensors placed close to the wheels of a train have been employed to record these vibrations. The algorithmic analysis of ABA data reveals patterns that can be associated with the condition of the wheels and rails. With this information, the maintenance costs and risks of failure can be reduced. #### On-board sensor systems The Rail to wheel interaction is a dataintensive topic. Therefore, from day one of the SIA project a lot of effort has been put in to working on the sensor systems that live up to the challenging railway environment and the strict railway regulations. Modular hardware units with two or more ABA sensors attached at each side of a rail vehicle have been designed and built. Railway-certified components were used, including industrial computing hardware and robust analog high-range ABA sensors. The software for the ABA data collection and processing has been implemented in robot operating system (ROS). The system can operate autonomously over months, in order to collect high-frequency ABA data for the offline analysis. #### **ABA data analysis** The ABA data can be analyzed both onboard (online) and in the back-office (offline). Positioning information is required for both, to complement detected events in the online data and to perform track-dependent analysis of the ABA data collected in several runs over the same track. Hence, E-GNSS driven positioning is an enabler in SIA. A range of wheel and rail failure modes have been investigated, including wheel flats and polygonization, as well as rail corrugation. The wheel failures cause periodic responses in the ABA data, which can be recovered using accurate vehicle speed estimates and advanced signal processing methods (ABA cepstrum). Similarly, recurring anomalies in the ABA data that appear at the same positions in the railway network point at track failures. Both wheel and rail key performance indicators have been derived. #### Rail wheel interaction monitoring in action The first experiment with a SIA prototype was performed on an ÖBB measurement vehicle during a two-week campaign in June 2019. After some Coronavirus-related delays (travelling restrictions and closed workshops) the SIA partners DLR and ÖBB installed SIA hardware for pilot operations on an ÖBB in-service passenger train. The system has been in operation since November 2020, traversing several routes around Linz and autonomously collecting ABA and E-GNSS data for offline analysis. SIA hardware for pilot operation (unit, ABA sensor, GNSS antenna on ÖBB vehicle) The ÖBB in-service passenger train with installation details Position data from several months pilot operation illustrates the routes visited by the vehicle (aerial image: basemap.at) ABA data and extracted rail KPI as functions of the along-track distance # Ingecontrol Visualization platform #### **Objectives** User interfaces (UI) and visualization platforms are paramount to enable end users to exploit data in a system and support successful market uptake. That's why one of the main objectives of the SIA project has been creating and testing a user interface for railway infrastructure and vehicles maintenance supported by georeferenced data. SIA Visualization Platform (SIA VP) has been implemented using an **open-source** software framework after thorough research and trade-offs. SIA VP is a web-based application with a client-server architecture formed of three layers and four different modules to support each one of the four SIA services: iRailMon, iWheelMon, iCatMon and iPantMon. Each of these modules provides the following functionalities to support the corresponding assets, monitoring and maintenance management: - Manage the list of components and associated KPIs, as well as their limits and thresholds, - Manage the maintenance list associated to each KPI, and the actions to do based on the KPIs status, - Display in a GIS (Geographical Information System) map the railway lines in the system, - Report and visualize the raw auscultation and inspection data, - Display the current status of the components based on the KPIs, - Display a prediction of the future status of components based on KPIs, - Generate alerts reporting the early detection of future failures, - Display maintenance recommendations based on the assets status. The development framework selected provides the SIA Visualization Platform with key features such as: - Ubiquity: It can be used from anywhere and on any device with an internet connection, this is very useful for field engineers and operators. - Security: This is mandatory as SIA works within critical infrastructure. - Scalability: SIA manages an evergrowing huge amount of data depending on the size of the network, the monitoring equipment deployed and the volume of historical data collected and future forecasts generated. - Rapidity: The visualization platform has to provide a quick response to user requests independently of the volume of data to be processed. - Interoperability with other third party and legacy applications used by infrastructure managers and train operating companies by means of web services and/or a flexible import/export modules of open formats such as csv, xml and json files. Thanks to the software development framework selected and following a user centred design methodology, SIA VP has become a powerful GIS solution supported by well-established open-source technologies. SIA VP displays user friendly meaningful information in maps, tables and charts to monitor the present and future status of assets and manage maintenance operations more efficiently in the railway sector. #### **Dissemination** **Peer-reviewed papers** The project partners attended several conferences and published a series of papers to present the results achieved during project life. Below a selection of papers published these past 2 years: - Map Aided Software Enhancement for Autonomous GNSS Complementary Positioning System for Railway – December 2019 – IEEE Transactions on Vehicular Technology (download HERE) - Hybridized GNSS and IMU Positioning for Train Infrastructure Asset Health Status Monitoring within the SIA-Project June 2020 ICL GNSS 2020 (download HERE) - Positioning for Train-infrastructure Asset Health Status Monitoring within the SIA-project September 2020 – ION GNSS+ 2020 (download HERE) - Positioning Approach for Train-Infrastructure Interaction Assets Health – November 2020 – European Navigation Conference (ENC 2020) (download HERE) - An Unsupervised Machine Learning Approach to Extract Wheel and Track Health Status Indicators from TrainBorne Accelerometer Data November 2020 ESREL 2020 PSAM 15 (download HERE) - Prediction of Rolling Contact Fatigue Behavior in Rails Using Crack Initiation and Growth Models along with Multibody Simulations January 2021 Special Issue of Monitoring and Maintenance Systems for Railway Infrastructure (download HERE) - Train Wheel Condition Monitoring via Cepstral Analysis of Axle Box Accelerations February 2021 Special Issue of Monitoring and Maintenance Systems for Railway Infrastructure (download HERE) ### SIA Project presented during a webinar organised by the Railway Innovation Hub On the 21st of May 2021, the Railway Innovation Hub held a webinar to present the project SIA to its members. The webinar was held partly in Spanish and partly in English. The two presentations delivered during the webinar can be downloaded below: - "Proyecto SIA: Motivación y lecciones aprendidas". Dr. Unai Alvarado, Centro Tecnológico CEIT - "EGNSS Positioning within the SIA Project", Dr. Michael Roth, German Aerospace Center (DLR) - The recording of the webinar (first part in Spanish, second part in English) can be found HERE. #### **SIA Newsletters** The SIA project partners have prepared and published several newsletters to update their followers on the project activities and progress. These newsletters can be reached at: ### SIA held its final event remotely on 15 October 2021 #### **Event highlights:** - Presentation of EUSPA - Introduction to the project - Characteristics - Ambition/Challenges - Architecture - Project's results and main achievements - EGNSS positioning - Pantograph-catenary interaction monitoring - Wheel-rail interaction monitoring - Visualization platform - Q&A and concluding remarks - The recording of the webinar can be accessed HERE. - The presentation delivered during this event can be downloaded HERE. #### SIA held its mid-term event remotely on 9 July 2020 On the 9th of July 2020, **over 70 participants attended the SIA mid-term webinar**; attendees included Infrastructure Managers, EU representatives, industry and academia from all over the world, including Spain, Portugal, France, Belgium, Germany, Italy, Austria, Japan and the United Kingdom. #### **Event highlights:** - Project overview (CEIT) - SIA system description (CEIT) - Positioning system & EGNSS benefits (NSL) - ► Wheel-Rail interaction (DLR) - Pantograph-Catenary interaction (CEIT) - ➤ SIA Visualisation Platform (Ingecontrol) - ► Q&A - The recording of the webinar can be accessed HERE. - The consolidated presentation delivered during this event can be downloaded HERE. ### **List of acronyms** | Acronyms | Description | |----------|--| | ABA | Axle-Box Acceleration | | AC | Alternating Current | | ADC | Analog to Digital Converter | | AHC | Anti Headcheck | | APF | Adjacent Post Fixation | | CAT | Corrugation Analysis Trolley | | СВМ | Condition Based Maintenance | | COTS | Commercial of the Shelf | | CPU |
Central Processing Unit | | CW | Contact Wire | | CWR | Continuously Welded Rail | | DC | Direct Current | | DECA | Digital Electronic Control Assembly | | DLR | Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center) | | DOC | Dilution of precision | | DOF | Degree of Freedom | | DT | Differed time | | EGNSS | European Global Navigation Satellite Systems | | EIF | External Interface | | ETSI | European Telecommunications Standards Institute | | FE | Finite Elements | | FGC | Ferrocarrils de la Generalitat de Catalunya. Spanish regional train operator | | FPGA | Field Programmable Gate Array | | FTP | File Transfer Protocol | | GIS | Geographic Information System | | GLONASS | GLObal Navigation Satellite System | | GNSS | Global Navigation Satellite System | | GSA | European Global Navigation Satellite Systems Agency | | HDD | Hard Disk Drive | | НМІ | Human Machine Interface | | HW | Hardware | | iCatMon | Application that provides information about the status of the catenary | | ID | Identity / Identification | | IEEE | Institute of Electrical and Electronics Engineers | | IF | Interface | | IIF | Internal interface | | IM | Infrastructure Manager | | IO Integrated Operator IP Ingress Protection code IPantMon Application that provides information about the status of the pantograph IRailMon Application that provides information about the status of the rail IRJ Insulated Rail Joints IT Information Technologies IWheelMon Application that provides information about the status of the wheelset JAVA A general purpose, high-level, object-oriented, cross-platform programming language developed by Sun Microsystems KP Kilometric Point KPI Key Performance Indicator LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device LIDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen-Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robt Operating System RT Real Time | Acronyms | Description | |---|-----------|--| | iPantMon Application that provides information about the status of the pantograph iRailMon Application that provides information about the status of the rail IRJ Insulated Rail Joints IT Information Technologies iWheelMon Application that provides information about the status of the wheelset IWheelMon Application that provides information about the status of the wheelset JAVA A general purpose, high-level, object-oriented, cross-platform programming language developed by Sun Microsystems KP Kilometric Point KPI Key Performance Indicator LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | 10 | Integrated Operator | | iRailMon Application that provides information about the status of the rail IRJ Insulated Rail Joints IT Information Technologies iWheelMon Application that provides information about the status of the wheelset JAVA A general purpose, high-level, object-oriented, cross-platform programming language developed by Sun Microsystems KP Kilometric Point KPI Key Performance Indicator LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOB Out of Round | IP | Ingress Protection code | | IRJ Insulated Rail Joints IT Information Technologies iWheelMon Application that provides information about the status of the wheelset JAVA A general purpose, high-level, object-oriented, cross-platform programming language developed by Sun Microsystems KP Kilometric Point KPI Key Performance Indicator LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device LIDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output M0TT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | iPantMon | Application that provides information about the status of the pantograph | | IT Information Technologies IWheelMon Application that provides information about the status of the wheelset JAVA A general purpose, high-level, object-oriented, cross-platform programming language developed by Sun Microsystems KP Kilometric Point KPI Key Performance Indicator LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen-Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | iRailMon | Application that provides information about the status of the rail | | iWheelMon Application that provides information about the status of the wheelset JAVA A general purpose, high-level, object-oriented, cross-platform programming language developed by Sun Microsystems KP Kilometric Point KPI Key Performance Indicator LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCI Peripheral Compon | IRJ | Insulated Rail Joints | | Ageneral purpose, high-level, object-oriented, cross-platform programming language developed by Sun Microsystems KP Kilometric Point KPI Key Performance Indicator LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device
LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | IT | Information Technologies | | language developed by Sun Microsystems KP Kilometric Point KPI Key Performance Indicator LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | iWheelMon | Application that provides information about the status of the wheelset | | KPI Key Performance Indicator LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | JAVA | | | LAN Local Area Network LCC Life Cycle Cost LED Light Emitting Device LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | KP | Kilometric Point | | LCC Life Cycle Cost LED Light Emitting Device LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | KPI | Key Performance Indicator | | Light Emitting Device LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF ROlling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | LAN | Local Area Network | | LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging LPI Liquid Penetrant Inspection M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | LCC | Life Cycle Cost | | LPI Liquid Penetrant Inspection LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | LED | Light Emitting Device | | LTE Long-Term Evolution M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | LiDAR | Light Detection and Ranging, Laser Imaging Detection and Ranging | | M2M Machine to Machine MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCle Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | LPI | Liquid Penetrant Inspection | | MIMO Multiple Input Multiple Output MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | LTE | Long-Term Evolution | | MQTT Message Queuing Telemetry Transport MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | M2M | Machine to Machine | | MT Maintainability NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | MIMO | Multiple Input Multiple Output | | NDE Non-destructive Examination NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian
Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | MQTT | Message Queuing Telemetry Transport | | NWR Normalized Wear Rate OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | MT | Maintainability | | OBB Österreichische Bundesbahnen- Austrian Federal Railways, a national train operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | NDE | Non-destructive Examination | | operator OCL Overhead Contact Line OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCle Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | NWR | Normalized Wear Rate | | OCW Overhead Contact Wire OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | OBB | · | | OOR Out of Round OP Operability PCB Printed Circuit Board PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | OCL | Overhead Contact Line | | OP Operability PCB Printed Circuit Board PCle Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | OCW | Overhead Contact Wire | | PCB Printed Circuit Board PCle Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | OOR | Out of Round | | PCIe Peripheral Component Interconnect (express) PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | OP | Operability | | PF Performance, Post Fixation PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | PCB | Printed Circuit Board | | PWR Power RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | PCle | Peripheral Component Interconnect (express) | | RAMS Reliability, Availability, Maintainability and Safety RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | PF | Performance, Post Fixation | | RCF Rolling Contact Fatigue REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | PWR | Power | | REQ Requirement RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | RAMS | Reliability, Availability, Maintainability and Safety | | RF Radio Frequency RMS Root Mean Square ROS Robot Operating System | RCF | Rolling Contact Fatigue | | RMS Root Mean Square ROS Robot Operating System | REQ | Requirement | | ROS Robot Operating System | RF | Radio Frequency | | | RMS | Root Mean Square | | RT Real Time | ROS | Robot Operating System | | | RT | Real Time | | Acronyms | Description | |-------------|---| | RTOS | Real Time Operative Systems | | SATA | Serial AT Attachment | | SBE | Electrical Lowering Device | | SFTP | Secure File Transfer Protocol | | SIA | System for vehicle-infrastructure Interaction Assets health status monitoring | | SIA_ABA | SIA subsystem: an onboard device that senses the wheelset-rail interaction | | SIA_CDM | Condition Degradation Modeling subsystem | | SIA_DH | SIA subsystem: an onboard device that integrates the data coming from onboard sensors (SIA_ABA and SIA_PANT), synchronizes the data with time & position (SIA_POS), stores it and sends it to the visualization platform (SIA_VP) | | SIA_DH_COM1 | Communications module (with SIA_PANT) of SIA_DH subsystem | | SIA_DH_COM2 | Communications module (with SIA_ABA) of SIA_DH subsystem | | SIA_DH_COM3 | Communications module (with SIA_POS) of SIA_DH subsystem | | SIA_DH_COM4 | Communications module (with SIA_VP) of SIA_DH subsystem | | SIA_DH_PS | Power Supply module of SIA_DH subsystem | | SIA_DH_PU | Processing Unit module of SIA_DH subsystem | | SIA_DH_STO | Storage module of SIA_DH subsystem | | SIA_PANT | SIA subsystem: an onboard device that senses the pantograph-catenary interaction | | SIA_POS | SIA subsystem: an onboard device that calculates the position of the train to synchronize it with the signals of the sensors | | SIA_VP | Visualization platform subsystem | | SIA_VP | SIA subsystem: back-office applications that analyze and visualize the data within iCatMon, iPantMon, iWheelMon and iRailMon applications | | SMA | SubMiniature version A | | SP | Supportability | | SPI | Serial Peripheral Interface | | SSD | Solid State Drive | | STFT | Short-Time Fourier Transform | | SW | Software | | TBD | To Be Done | | TBV | To Be Verified | | тос | Train Operating Company | | UDP | User Datagram Protocol | | UPN | European standard for U channel | | UPS | Uninterruptible Power Supply | | USB | Universal Serial Bus | | VBOX | SIA_DH_PU module by SINTRONES | | WLAN | Wireless Local Area Network | | WP | Work Package | | N° | NAME | SHORT NAME | COUNTRY | |----|--|-------------|----------------| | 1 | Asociación Centro Tecnológico Ceit | CEIT | Spain | | 2 | Union Internationale des Chemins de fer | UIC | France | | 3 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | DLR | Germany | | 4 | Ingeniería y Control Electrónico SA | Ingecontrol | Spain | | 5 | Teléfonos Líneas y Centrales SA | TEL | Spain | | 6 | Vías y Construcciones SA | VIAS | Spain | | 7 | ÖBB-Infrastruktur AG | ÖBB | Austria | | 8 | Ferrocarrils de la Generalitat de Catalunya | FGC | Spain | | 9 | GMV NSL | GMV NSL | United Kingdom | #### **CONTACT** #### **Project coordinator** Mr. Unai Alvarado - CEIT ualvarado@ceit.es #### **Dissemination** Ms. Christine Hassoun - UIC hassoun@uic.org @SIAGalileo in www.linkedin.com/ company/72758829 www.siaproject.eu